| No. |  Date. |  Notes. |  
  | 
Part 1. An Introduction to Non-harmonic Fourier Analysis
 |  
  | 
Lecture 1
 |  
2023/02/14
 |   Lecture 1: Chapter 1: Bases in Banach Spaces-Schauder basis, Schauder
            theorem and Orthonormal basis in Hilbert Space  |  
  | Lecture 2 |  2023/02/16 |  Lecture 2: cont.Hilbert Space, Reproducing Kernel |  
  | 
Lecture 3
 |  2023/02/23 |   Lecture 3: Complete sequences, Coefficient functional, Riesz basis  |  
  | 
Lecture 4
 |  
2023/02/28
 |   Lecture 4: cont. Equivalent condition of Riesz basis, Paley-wiener
            criterion  |  
  | 
Lecture 5
 |  2023/03/02 |   Lecture 5: Problem Set Discussion-1, Chapter 2: Entire functions of
            Exponential Type  这一个Lecture和之后的Lecture有部分Complex Analysis的内容   |  
  | 
Lecture 6
 |  
2023/03/09
 |   Lecture 6: cont. Entire function of exponential type  |  
  | Lecture 7 |  2023/03/14 |   Lecture 7:  Paley-Wiener Theorem and Paley-Wiener space  |  
  | Lecture 8 |  2023/03/16 |   Lecture 8: Chapter 3: The Completeness of sets of complex exponentials  |  
  | Lecture 9 |  2023/03/23 |   Lecture 9: cont.Completeness of sets of complex exponentials, Kadec 1/4 theorem  |  
  | Lecture 10 |  
2023/03/28
 |   Lecture 10: Stability, Chapter 4: Interpolation and basis in Hilbert space  |  
  | Lecture 11 |  2023/03/30 |   Lecture 11: cont.Bessel Sequences, Riesz-Fischer Sequences, Moment Space and Equivalent Sequences,
            Frame  |  
  | 
Lecture 12
 |  
2023/04/06
 |   Lecture 12: cont. Exact frame and Riesz basis, Stability of Non-harmonic
            Series  |  
  | 
Part 2: A Course in Abstract Harmonic Analysis
(🗒️ Outline)  |  
  | 
Lecture 13
 |  
2023/04/11
 |     |  
  | 
Lecture 14
 |  2023/04/13 |   Lecture 14:  p-adic field Qp  |  
  | Lecture 15 |  2023/04/20 |   Lecture 15:  Convolutions on G, Homogeneous spaces  |  
  | Lecture 16 |  2023/04/25 |   Lecture 16: Banach Algebra and Basic Representation Theory  |  
  | Lecture 17 |  2023/04/27 |   Lecture 17: cont. Basic Representation Theory  |  
  | Lecture 18 |  2023/05/04 |   Lecture 18: Analysis on locally compact abelian groups  |  
  | Lecture 19 |  2023/05/09 |   Lecture 19:  cont. Characters  |  
  | Lecture 20 |  2023/05/11 |   Lecture 20: Qp hat sim Qp, Fourier Transform  |  
  | Lecture 21 |  2023/05/18 |   Lecture 21: Bochner’s theorem, Fourier Inversion  |  
  | Lecture 22 |  2023/05/23 |   Lecture 22: Pontrjagin Duality  |  
  | Lecture 23 |  2023/05/25 |   Lecture 23: Proof of Pontrjagin Duality, Poisson Summation Formula  |  
  | Lecture 24 |  2023/06/01 |   Lecture 24: cont. Poisson Summation Formula  |